ନିଉରାଲ ମେସିନ ଟ୍ରାନ୍ସଲେସନ
ନିଉରାଲ ମେସିନ ଟ୍ରାନ୍ସଲେସନ ହେଉଛି ମେସିନ_ଟ୍ରାନ୍ସଲେସନର ଏକ ଉପାୟ, ଯାହା ଏକ artificial neural network ବ୳ବହାର କରି ଶବ୍ଦକ୍ରମର ସମ୍ଭାବନା ନିରୂପଣ କରେ , ପ୍ରାୟତଃ ସମ୍ପୂର୍ଣ୍ଣ ବାକ୳କୁ ଏକ ସଂଗଠିତ ରୂପରେ ସଜାଡ଼େ ।
ଗୁଣାବଳୀ
[ସମ୍ପାଦନା]ନିଉରାଲ ଟ୍ରାନ୍ସଲେସନ ମଡେଲ ସବୁ ପାରମ୍ପାରିକ ଷ୍ଟାଟିଷ୍ଟିକାଲ ମେସିନ ଟ୍ରାନ୍ସଲେସନ (statistical machine translation) ମଡେଲଠାରୁ ବହୁତ କମ ମେମୋରି ଆବଶ୍ୟକ କରନ୍ତି । ପାରମ୍ପାରିକ ଅନୁବାଦ ବ୳ବସ୍ଥାମାନଙ୍କଠାରୁ ଅଲଗା ଭାବରେ, ଅନୁବାଦର ମାନ ବୃଦ୍ଧି ପାଇଁ ନିଉରାଲ ଟ୍ରାନ୍ସଲେସନ ମଡେଲର ସମସ୍ତ ଭାଗ ସବୁକୁ ଏକ ସହିତ ଶିକ୍ଷା ଦିଆଯାଏ।
ଇତିହାସ
[ସମ୍ପାଦନା]୧୯୯୦ରେ ଡିପ୍ ଲର୍ଣିଂର ପ୍ରୟୋଗ ସବୁ ପ୍ରଥମେ କଥା ଚିହ୍ନିବା( ସ୍ପୀଚ ରେକଗନିସନ) ରେ କରା ଯାଇଥିଲା। ନିଉରାଲ ନେଟୱର୍କ ବ୍ୟବହାରର ପ୍ରଥମ ବୈଜ୍ଞାନିକ ଲେଖା ୨୦୧୪ରେ ବାହାରିଲା , ତା ପର କିଛି ବର୍ଷ ଭିତରେ ବହୁତ ଉନ୍ନତି ହେଲା . ୨୦୧୫ରେ ଗୋଟିଏ ଯନ୍ତ୍ର ଅନୁବାଦ ପ୍ରତିଯୋଗିତାରେ ନିଉରାଲ ମେସିନ ଟ୍ରାନ୍ସଲେସନ ବ୍ୟବସ୍ଥା ପ୍ରଥମଥର ପାଇଁ ଜନସାଧାରଣ ଆଗକୁ ଆସିଲା (OpenMT'15) [୧].
କାର୍ଯ୍ୟକାରିଣୀ
[ସମ୍ପାଦନା]ଖଣ୍ଡ ବାକ୳ ଉପରେ ଆଧାରିତ, ଷ୍ଟାଟିଷ୍ଟିକାଲ ମେସିନ ଟ୍ରାନ୍ସଲେସନ ମାନଙ୍କରେ ପ୍ରୟୋଗ ହେଉଥିବା, ଉପଖଣ୍ଡ ବାହାରକରି, ସେ ଉପଖଣ୍ଡମାନଙ୍କୁ ଅଲଗା ଇଂଜିନିୟରିଂ କରିବା ଉପାୟରୁ, NMT ନୂଆ ।ଶବ୍ଦ ଓ ଅନ୍ତର୍ଗତ ଅବସ୍ଥା ("embeddings", "continuous space representations") ପାଇଁ ଭେକ୍ଟର ରୂପର ବ୳ବହାର କରିବା ହେଉଛି ନିଉରାଲ ମେସିନ ଟ୍ରାନ୍ସଲେସନର ନୂତନତା ଏ ମଡେଲର ସଜ୍ଜା ଖଣ୍ଡ ବାକ୳ ଉପରେ ଆଧାରିତ ମଡେଲମାନଙ୍କଠାରୁ ସହଜ . ଅଲଗା ଭାଷା ମଡେଲ , ଅନୁବାଦ ମଡେଲ , ଆଉଥରେ ସଜଉଥିବା ମଡେଲ ଭଳି ଅଲଗା ଅଲଗା ମଡେଲ ସବୁ ନଥାଇ ଗୋଟିଏ ସିକୁଏନ୍ସ (କ୍ରମ) ମଡେଲ ଅଛି ଯାହା ଥରକେ ଗୋଟିଏ ଶବ୍ଦକୁ ଅନୁମାନ କରେ, ଯଦିଓ ଏ କ୍ରମର ଅନୁମାନ ପୁରା ଉତ୍ସ ବାକ୍ୟ ଓ ଲକ୍ଷ ବାକ୍ୟ ମାନଙ୍କୁ ନେଇ ତିଆରି ହୁଏ । ନିଉରାଲ ମେସିନ ଟ୍ରାନ୍ସଲେସନର ମଡେଲମାନେ deep learning ଓ representation learning ବ୍ୟବହାରର କରନ୍ତି ।
ଏ ଶବ୍ଦ କ୍ରମ ମଡେଲ ତିଆରି ପ୍ରଥମେ ପ୍ରାୟତଃ ଏକ recurrent neural network (RNN) ବ୳ବହାର କରି କରାଯାଉଥିଲା । ଏ neural network ଦ୍ୱାରା ଏକ ଉତ୍ସ ଭାଷାର(ସୋର୍ସ ଲାଙ୍ଗୁଏଜ) ବାକ୍ୟକୁ ଏନକୋଡ଼ିଙ୍ଗ କରିବା ପାଇଁ ଏନକୋଡର ନାମରେ ଏକ ଦୋମୁହାଁ RNN ବ୍ୟବହାର ହୁଏ , ଡିକୋଡର ନାମରେ ଥିବା ଦ୍ୱିତୀୟ RNN, (ଟାର୍ଗେଟ ଲାଙ୍ଗୁଏଜ) ଲକ୍ଷ ଭାଷାରେ ଶବ୍ଦ ସବୁ ଅନୁମାନ କରିବା ପାଇଁ ବ୳ବହାର ହୁଏ ।
Convolutional Neural Networks (Convnets) ସବୁ ଲମ୍ବା କ୍ରମସବୁ ପାଇଁ ପ୍ରାୟତଃ ଭଲ, କିନ୍ତୁ ପ୍ରଥମେ କିଛି ଦୁର୍ବଳତା ପାଇଁ ବ୍ୟବହାର କରାଯାଉନଥିଲା । ଅନେକ ଦୁର୍ବଳତା ୨୦୧୭ରେ ଧ୳୲ନ( "attention") ଉପରେ ଆଧାରିତ ଉପାୟମାନଙ୍କ ବ୳ବହାରଦ୍ୱାରା ଦୂର ହୋଇଛି ।ଅତି ଅଧିକା ଅନୁବାଦ ବା ଅତି କାମ ଅନୁବାଦ ଭଳି ସମସ୳୲ ତିଆରି କରୁଥିବା ଅଲାଇନମେଣ୍ଟ ଇନ୍ଫୋରମେସନକୁ ବାଦ କରିବା ଭଳି ଆହୁରି କଭରେଜ ମଡେଲ ସବୁ ଅଛି ପାରମ୍ପରିକ ଧ୳୲ନ ଉପାୟରେ ଥିବା ସମସ୳୲ ସମାଧାନ କରିବାପାଇଁ । [୨].
ବ୳ବହାର
[ସମ୍ପାଦନା]୨୦୧୭ ସୁଦ୍ଧା , ପ୍ରାୟ ସବୁ ଭଲ ଯନ୍ତ୍ରାନୁବାଦ ବ୍ୟବସ୍ଥା କୃତ୍ରିମ ସ୍ନାୟୁ ଜାଲ ବ୍ୟବହାର କରୁଥିଲେ। ଏବେ Google, Google, Microsoft, IBM,Yandex and PROMT ଅନୁବାଦ ସେବା ସବୁ NMT ବ୍ୟବହାର କରୁଛନ୍ତି । Google ଆଗର ଷ୍ଟାଟିଷ୍ଟିକାଲ ମେସିନ ଟ୍ରାନ୍ସଲେସନ ଉପାୟ ସବୁ ଛାଡି ତାର ନିଜର Google Neural Machine Translation (GNMT) ବ୍ୟବହାର କରୁଛି । Microsoft ବକ୍ତବ୍ୟ ଅନୁବାଦ ସବୁରେ (including Microsoft Translator live and Skype Translator) ସମାନ ପ୍ରକାରର ଟେକ୍ନୋଲୋଜି ବ୍ୟବହାର କରୁଛି . Harvard NLP group ମଧ୍ୟ OpenNMT ନାମରେ ,ଏକ open source ନିଉରାଲ ମେସିନ ଟ୍ରାନ୍ସଲେସନ ବ୍ୟବସ୍ଥା ତିଆରି କରିଛି ।
ପ୍ରାକୃତିକ ଭାଷା ବାହାରେ ମଧ୍ୟ NMT ଟେକ୍ନୋଲୋଜି ବ୍ୟବହାର ହୋଇପାରିବ। ଦେଖାଯାଇଛି ଯେ NMT କମ୍ପ୍ୟୁଟର ପ୍ରୋଗ୍ରାମର ସୋର୍ସ କୋଡ଼ରେ ମଧ୍ୟ ବ୍ୟବହାର ହୋଇ ପାରିବ । ସୋର୍ସ କୋଡ଼କୁ ଠିକରେ ଏନକୋଡ଼ିଙ୍ଗ କରି, SequenceR automatic bug fixing system (ସ୍ୱୟଂଚଳିତ ଭୁଲ ଠିକ କରିବା ବ୍ୟବସ୍ଥା) ପୂର୍ବ କୋଡ଼କୁ ଦେଖି , ଏକ ଧାଡ଼ିଆ କୋଡ଼ ଲେଖି ଠିକ କରିପାରୁଛି। [୩]
ଆଧାର
[ସମ୍ପାଦନା]- ↑ "Neural machine translation", Wikipedia (in ଇଂରାଜୀ), 2020-01-30, retrieved 2020-02-09
- ↑ Tu, Zhaopeng; Lu, Zhengdong; Liu, Yang; Liu, Xiaohua; Li, Hang (2016). "Modeling Coverage for Neural Machine Translation". arXiv:1601.04811 [cs.CL].
- ↑ Chen, Zimin; Kommrusch, Steve James; Tufano, Michele; Pouchet, Louis-Noel; Poshyvanyk, Denys; Monperrus, Martin (2019). "SEQUENCER: Sequence-to-Sequence Learning for End-to-End Program Repair". IEEE Transactions on Software Engineering: 1. arXiv:1901.01808. doi:10.1109/TSE.2019.2940179. ISSN 0098-5589.
ଆଧାର ଭୁଲ: <references>
ରେ ଦିଆଯାଇଥିବା "WMT16" ନାମ ସହ ଥିବା <ref>
ଚିହ୍ନ ଦରକାରୀ ଲେଖାରେ ବ୍ୟବହାର ହୋଇନାହିଁ ।
ଆଧାର ଭୁଲ: <references>
ରେ ଦିଆଯାଇଥିବା "Medical" ନାମ ସହ ଥିବା <ref>
ଚିହ୍ନ ଦରକାରୀ ଲେଖାରେ ବ୍ୟବହାର ହୋଇନାହିଁ ।
ଆଧାର ଭୁଲ: <references>
ରେ ଦିଆଯାଇଥିବା "attention" ନାମ ସହ ଥିବା <ref>
ଚିହ୍ନ ଦରକାରୀ ଲେଖାରେ ବ୍ୟବହାର ହୋଇନାହିଁ ।
ଆଧାର ଭୁଲ: <references>
ରେ ଦିଆଯାଇଥିବା "DeepL" ନାମ ସହ ଥିବା <ref>
ଚିହ୍ନ ଦରକାରୀ ଲେଖାରେ ବ୍ୟବହାର ହୋଇନାହିଁ ।
ଆଧାର ଭୁଲ: <references>
ରେ ଦିଆଯାଇଥିବା "AIawakening" ନାମ ସହ ଥିବା <ref>
ଚିହ୍ନ ଦରକାରୀ ଲେଖାରେ ବ୍ୟବହାର ହୋଇନାହିଁ ।
ଆଧାର ଭୁଲ: <references>
ରେ ଦିଆଯାଇଥିବା "MS-NMT" ନାମ ସହ ଥିବା <ref>
ଚିହ୍ନ ଦରକାରୀ ଲେଖାରେ ବ୍ୟବହାର ହୋଇନାହିଁ ।
ଆଧାର ଭୁଲ: <references>
ରେ ଦିଆଯାଇଥିବା "OpenNMT" ନାମ ସହ ଥିବା <ref>
ଚିହ୍ନ ଦରକାରୀ ଲେଖାରେ ବ୍ୟବହାର ହୋଇନାହିଁ ।
ଆଧାର ଭୁଲ: <references>
ରେ ଦିଆଯାଇଥିବା "Yandex" ନାମ ସହ ଥିବା <ref>
ଚିହ୍ନ ଦରକାରୀ ଲେଖାରେ ବ୍ୟବହାର ହୋଇନାହିଁ ।
ଆଧାର ଭୁଲ: <references>
ରେ ଦିଆଯାଇଥିବା "KalchbrennerBlunsom" ନାମ ସହ ଥିବା <ref>
ଚିହ୍ନ ଦରକାରୀ ଲେଖାରେ ବ୍ୟବହାର ହୋଇନାହିଁ ।
ଆଧାର ଭୁଲ: <references>
ରେ ଦିଆଯାଇଥିବା "sequence" ନାମ ସହ ଥିବା <ref>
ଚିହ୍ନ ଦରକାରୀ ଲେଖାରେ ବ୍ୟବହାର ହୋଇନାହିଁ ।
ଆଧାର ଭୁଲ: <references>
ରେ ଦିଆଯାଇଥିବା "Properties" ନାମ ସହ ଥିବା <ref>
ଚିହ୍ନ ଦରକାରୀ ଲେଖାରେ ବ୍ୟବହାର ହୋଇନାହିଁ ।
ଆଧାର ଭୁଲ: <references>
ରେ ଦିଆଯାଇଥିବା "align&translate" ନାମ ସହ ଥିବା <ref>
ଚିହ୍ନ ଦରକାରୀ ଲେଖାରେ ବ୍ୟବହାର ହୋଇନାହିଁ ।
<references>
ରେ ଦିଆଯାଇଥିବା "han&kuang2018nmt" ନାମ ସହ ଥିବା <ref>
ଚିହ୍ନ ଦରକାରୀ ଲେଖାରେ ବ୍ୟବହାର ହୋଇନାହିଁ ।