ଜର୍ଜ କ୍ୟାଣ୍ଟର

ଉଇକିପିଡ଼ିଆ ରୁ
Jump to navigation Jump to search
ଜର୍ଜ କ୍ୟାଣ୍ଟର
Georg Cantor2.jpg
ଜନ୍ମ ଓ ଜନ୍ମସ୍ଥାନ
ଜର୍ଜ ଫର୍ଡିନାଣ୍ଡ ଲୁଡୱିଗ ଫିଲିପ କ୍ୟାଣ୍ଟର

ମାର୍ଚ୍ଚ ୩, ୧୮୪୫(1845-03-03)
ମୃତ୍ୟୁ୬ ଜାନୁଆରୀ ୧୯୧୮(1918-01-06) (ବୟସ ୭୨)
ଜାତୀୟତାଜର୍ମାନ

ବିଖ୍ୟାତ ଜର୍ମାନ ଗଣିତଜ୍ଞ । ସେଟ୍ ତତ୍ୱର ଉଦ୍ଭାବକ ଭାବେ ପ୍ରସିଦ୍ଧ ।

ଜୀବନୀ-1970 ଦଶକ ପର୍ଯ୍ୟନ୍ତ, କ୍ୟାଣ୍ଟର ଉପରେ ମୁଖ୍ୟ ଏକାଡେମିକ୍ ପ୍ରକାଶନଗୁଡ଼ିକ ଆର୍ଥର୍ ମୋରିଜ୍ ଶୋନ୍ଫ୍ଲାଇସ୍ (1927) ଙ୍କ ଦ୍ୱାରା କ୍ଷୁଦ୍ର ମନୋଗ୍ରାଫ୍ ଥିଲା - ମୁଖ୍ୟତ M ମିଟାଗ୍-ଲେଫଲର - ଏବଂ ଫ୍ରେଙ୍କେଲ (1930) ସହିତ ଚିଠି | ଉଭୟ ଦ୍ୱିତୀୟ ଏବଂ ତୃତୀୟ ହାତରେ ଥିଲେ; କିମ୍ବା ତାଙ୍କ ବ୍ୟକ୍ତିଗତ ଜୀବନରେ ଅଧିକ କିଛି ନଥିଲା | ଏହି ଫାଙ୍କଟି ମୁଖ୍ୟତ Eric ଏରିକ୍ ମନ୍ଦିର ବେଲର ମେନ ଅଫ୍ ଗଣିତ (1937) ଦ୍ୱାରା ପୂର୍ଣ୍ଣ ହୋଇଥିଲା, ଯାହା କାଣ୍ଟୋରଙ୍କ ଆଧୁନିକ ଜୀବନୀ ମଧ୍ୟରୁ ଜଣେ “ବୋଧହୁଏ ଗଣିତ ଇତିହାସରେ ବହୁଳ ଭାବରେ ପଢ଼ାଯାଇଥିବା ଆଧୁନିକ ପୁସ୍ତକ” ଭାବରେ ବର୍ଣ୍ଣନା କରିଥିଲେ; ଏବଂ "ସବୁଠାରୁ ଖରାପ" ଭାବରେ | ବେଲ ତାଙ୍କ ପିତାଙ୍କ ସହ ଓଡିପାଲ ଭାବରେ କ୍ୟାଣ୍ଟରଙ୍କ ସମ୍ପର୍କ, କ୍ରୋନେକରଙ୍କ ସହିତ ଦୁଇ ଯିହୁଦୀଙ୍କ ମଧ୍ୟରେ rel ଗଡ଼ା ଏବଂ କ୍ୟାଣ୍ଟରଙ୍କ ପାଗଳତା ତାଙ୍କ ଗଣିତ ପାଇଁ ଗ୍ରହଣ କରିବାରେ ବିଫଳ ହେବା କାରଣରୁ ରୋମାଣ୍ଟିକ ନିରାଶା ଭାବରେ ଉପସ୍ଥାପନ କରିଥିଲେ | ଗ୍ରେଟାନ୍-ଗିନିଜ୍ (1971) ଜାଣିବାକୁ ପାଇଲେ ଯେ ଏହି ଦାବିଗୁଡିକ ମଧ୍ୟରୁ କ true ଣସିଟି ସତ୍ୟ ନୁହେଁ, କିନ୍ତୁ ଅନ୍ୟ କ nar ଣସି କାହାଣୀର ଅନୁପସ୍ଥିତି ହେତୁ ସେଗୁଡିକ ମଧ୍ୟବର୍ତ୍ତୀ ସମୟର ଅନେକ ପୁସ୍ତକରେ ମିଳିପାରେ | ବେଲ ଠାରୁ ସ୍ୱାଧୀନ କିମ୍ବଦନ୍ତୀ ଅଛି - ଯେଉଁଥିରେ କ୍ୟାଣ୍ଟରଙ୍କ ପିତାଙ୍କୁ ଏକ ପ୍ରତିଷ୍ଠାତା ବୋଲି କୁହାଯାଏ, ଅଜ୍ଞାତ ପିତାମାତାଙ୍କ ଦ୍ୱାରା ପିଟର୍ସବର୍ଗକୁ ପଠାଯାଇଥିଲା | ଜୋସେଫ ଡାଉବେନଙ୍କ ଜୀବନୀରେ ବେଲଙ୍କ ପୁସ୍ତକର ଏକ ସମାଲୋଚନା ରହିଛି। ଡାବନ୍ ଲେଖିଛନ୍ତି:

କ୍ୟାଣ୍ଟର ତାଙ୍କର କେତେକ ଭିଟୁପେରେଟିଭ୍ ଚିଠି, ଏବଂ ବିଟ୍ରାଜ୍ ର ଏକ ଅଂଶକୁ ଉତ୍ସର୍ଗ କରିଥିଲେ, ଯାହା ଥୋମା, ଡୁ ବୋଇସ୍ ରେମଣ୍ଡଙ୍କ କାର୍ଯ୍ୟ ମାଧ୍ୟମରେ ଜର୍ମାନୀରୁ ବ୍ୟାପିଥିବା 'ଗଣିତର ଅସୀମ କଲେରା ବ୍ୟାକିଲସ୍' ଭାବରେ ସେ ବର୍ଣ୍ଣନା କରିଥିଲେ।  ଏବଂ ଷ୍ଟୋଲଜ୍, ଇଟାଲୀୟ ଗଣିତକୁ ସଂକ୍ରମିତ କରିବା ପାଇଁ ... ଅସୀମତା ଯେକୌଣସି ଗ୍ରହଣର ଅର୍ଥ ହେଉଛି ଯେ ତାଙ୍କର ନିଜସ୍ୱ ସଂଖ୍ୟା ସିଦ୍ଧାନ୍ତ ଅସମ୍ପୂର୍ଣ୍ଣ ଥିଲା |  ଏହିପରି ଥୋମା, ଡୁ ବୋଇସ୍-ରେମଣ୍ଡ, ଷ୍ଟୋଲଜ୍ ଏବଂ ଭେରୋନିସର କାର୍ଯ୍ୟକୁ ଗ୍ରହଣ କରିବା କ୍ୟାଣ୍ଟରଙ୍କ ନିଜ ସୃଷ୍ଟିର ସିଦ୍ଧତାକୁ ଅସ୍ୱୀକାର କରିବା | ବୁଝାମଣା , କ୍ୟାଣ୍ଟୋର ଭେରୋନିସ୍ଙ୍କ କାର୍ଯ୍ୟକୁ ପ୍ରତ୍ୟେକ ଉପାୟରେ ଅବମାନନା କରିବା ପାଇଁ ଏକ ପୁଙ୍ଖାନୁପୁଙ୍ଖ ଅଭିଯାନ ଆରମ୍ଭ କରିଥିଲେ।

ଅଧିକ ଦେଖନ୍ତୁ[ସମ୍ପାଦନା]

Older sources on Cantor's life should be treated with caution. See Historiography section above.
Primary literature in English
  • Cantor, Georg (1955) [1915], Philip Jourdain (ed.), Contributions to the Founding of the Theory of Transfinite Numbers, New York: Dover, ISBN 978-0-486-60045-1 Text "harv" ignored (help).
  • Ewald, William B., ed. (1996), From Immanuel Kant to David Hilbert: A Source Book in the Foundations of Mathematics, New York: Oxford University Press, ISBN 978-0-19-853271-2 Text "harv" ignored (help).
Primary literature in German
Secondary literature
  • Aczel, Amir D. (2000), The mystery of the Aleph: Mathematics, the Kabbala, and the Human Mind, New York: Four Walls Eight Windows Publishing Text "harv" ignored (help). ISBN 0-7607-7778-0. A popular treatment of infinity, in which Cantor is frequently mentioned.
  • Dauben, Joseph W. (1977), "Georg Cantor and Pope Leo XIII: Mathematics, Theology, and the Infinite", Journal of the History of Ideas, 38 (1): 85–108 Text "harv" ignored (help).
  • Dauben, Joseph W. (1979), Georg Cantor: his mathematics and philosophy of the infinite, Boston: Harvard University Press Text "harv" ignored (help). The definitive biography to date. ISBN 978-0-691-02447-9
  • Dauben, Joseph W. (1983), "Georg Cantor and the Origins of Transfinite Set Theory", Scientific American, 248 (6): 122–131 Text "harv" ignored (help); Unknown parameter |month= ignored (help)
  • Dauben, Joseph (1993, 2004), "[www.acmsonline.org/Dauben93.htm Georg Cantor and the Battle for Transfinite Set Theory]", Proceedings of the 9th ACMS Conference (Westmont College, Santa Barbara, CA), pp. 1–22 Text "harv" ignored (help); Check date values in: |year= (help). Internet version published in Journal of the ACMS 2004.
  • Davenport, Anne A. (1997), "The Catholics, the Cathars, and the Concept of Infinity in the Thirteenth Century", Isis, 88 (2): 263–295 Text "harv" ignored (help).
  • Ferreirós, José (2007), Labyrinth of Thought: A History of Set Theory and Its Role in Mathematical Thought, Basel, Switzerland: Birkhäuser Text "harv" ignored (help). ISBN 3-7643-8349-6 Contains a detailed treatment of both Cantor's and Dedekind's contributions to set theory.
  • Grattan-Guinness, Ivor (1971), "Towards a Biography of Georg Cantor", Annals of Science, 27: 345–391 Text "harv" ignored (help).
  • Grattan-Guinness, Ivor (2000), The Search for Mathematical Roots: 1870–1940, Princeton University Press Text "harv" ignored (help). ISBN 978-0-691-05858-0
  • Gray, Robert (1994), "[mathdl.maa.org/mathDL/22/?pa=content&sa=viewDocument&nodeId=2907 Georg Cantor and Transcendental Numbers]", American Mathematical Monthly, 101: 819–832 Text "harv" ignored (help).
  • Hallett, Michael (1986), Cantorian Set Theory and Limitation of Size, New York: Oxford University Press Text "harv" ignored (help). ISBN 0-19-853283-0
  • Halmos, Paul (1998, 1960), Naive Set Theory, New York & Berlin: Springer Text "harv" ignored (help); Check date values in: |year= (help). ISBN 3-540-90092-6
  • Hill, C. O.; Rosado Haddock, G. E. (2000), Husserl or Frege? Meaning, Objectivity, and Mathematics, Chicago: Open Court Text "harv" ignored (help). ISBN 0-8126-9538-0 Three chapters and 18 index entries on Cantor.
  • Johnson, Phillip E. (1972), "The Genesis and Development of Set Theory", The Two-Year College Mathematics Journal, 3 (1): 55–62 Text "harv" ignored (help).
  • Meschkowski, Herbert (1983), Georg Cantor, Leben, Werk und Wirkung (George Cantor, Life, Work and Influence, in German), Wieveg, Braunschweig Text "harv" ignored (help)
  • Moore, A.W. (1995), "A brief history of infinity", Scientific American, 272 (4): 112–116 Text "harv" ignored (help); Unknown parameter |month= ignored (help).
  • Penrose, Roger (2004), The Road to Reality, Alfred A. Knopf Text "harv" ignored (help). ISBN 0-679-77631-1 Chapter 16 illustrates how Cantorian thinking intrigues a leading contemporary theoretical physicist.
  • Purkert, Walter; Ilgauds, Hans Joachim (1985), Georg Cantor: 1845–1918, Birkhäuser Text "harv" ignored (help). ISBN 0-8176-1770-1
  • Reid, Constance (1996), Hilbert, New York: Springer-Verlag Text "harv" ignored (help). ISBN 0-387-04999-1
  • Rucker, Rudy (2005, 1982), Infinity and the Mind, Princeton University Press Text "harv" ignored (help); Check date values in: |year= (help). ISBN 0-553-25531-2 Deals with similar topics to Aczel, but in more depth.
  • Rodych, Victor (2007), "[plato.stanford.edu/entries/wittgenstein-mathematics/ Wittgenstein's Philosophy of Mathematics]", in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy Text "harv" ignored (help).
  • Snapper, Ernst (1979), "[math.boisestate.edu/~tconklin/MATH547/Main/Exhibits/Three%20Crises%20in%20Math%20A.pdf The Three Crises in Mathematics: Logicism, Intuitionism and Formalism]", Mathematics Magazine, 524: 207–216 Text "harv" ignored (help).
  • Suppes, Patrick (1972, 1960), Axiomatic Set Theory, New York: Dover Text "harv" ignored (help); Check date values in: |year= (help). ISBN 0-486-61630-4 Although the presentation is axiomatic rather than naive, Suppes proves and discusses many of Cantor's results, which demonstrates Cantor's continued importance for the edifice of foundational mathematics.
  • Wallace, David Foster (2003), Everything and More: A Compact History of Infinity, New York: W.W. Norton and Company Text "harv" ignored (help). ISBN 0-393-00338-8
  • Weir, Alan (1998), "Naive Set Theory is Innocent!", Mind, 107 (428): 763–798 Text "harv" ignored (help).